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Abstract 

We review algebraic characterizations of molecular structures and in particular 
consider different matrices associated with a molecule as a source of novel graph 
invariants for use in structure-property and structure-activity studies. Such matrices 
can be classified as structure-explicit, structure-cryptic, and structure-implicit corresponding 
to a previous classification of molecular descriptors. In order to tame the proliferation 
of unwarranted topological indices, we propose requirements on indices and on the 
"source" matrices used for construction of molecular descriptors. Several structure- 
explicit and structure-implicit matrices are illustrated. A novel bond descriptor P'/P 
defined by the ratio of the number of paths in a graph G', in which an edge is erased, 
and in the parent graph G is introduced. The derived bond-additive molecular P'/P 
index, which correlates well with the octane numbers in octanes, was found to be 
linearly related to the Wiener numbers. 

1. In t roduct ion  

To describe a chemical structure, one can list its properties or alternatively 
one can present its name, preferably based on structural elements. The former do not 
necessitate information on atom cormectivities or on atomic coordinates, and may be 
viewed as an output, either of experimental measurements or theoretical computations 
on a molecule. In contrast, the a tom-a tom connectivities and the atomic coordinates 
can be viewed as molecular input. If codes are used to represent a structure, information 
is required as to how such codes relate to atomic labels so that the code leads to a 
reconstruction of  the molecular graph. In mathematical terminology, properties are 
structural invariants, which means that they are independent of  assumed labels for 
atoms (vertices in a molecular graph) and independent of pictorial representations of  
a structure. A short list of  molecular invariants for a structure need not be unique 
because different structures may have some of the same properties, and as such may 
then lead to the same descriptors. One expects that different structures will differ in 
at least some of their properties, hence a need for consideration of additional descriptors. 
As a consequence of  the non-uniqueness of descriptors, a list of molecular descriptors 
in general does not allow one to reconstruct a molecule. However, it appears that one 
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can considerably narrow down the possibilities for candidate structures in some 
applications and thus succeed in a reconstruction [1 ]. In contrast, qualified molecular 
codes will not only permit a reconstruction but often reconstruction is not 
difficult [2-5] .  

Both, the codes (i.e. names, labels, indicators) as well as invariants, e.g. the 
so-called topological indices (which in fact are graph-theoretical indices), continue 
to proliferate. Hence, is seems the time has come to formulate requirements for these 
codes and invariants. Read [6] listed a dozen desirable requirements for molecular 
codes, which we reproduce in table 1. The list includes as the most important requirements 

Table 1 

List of desirable requirements for chemical codes as proposed by Read [6] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Codes should be linear strings of symbols 

Codes should be unique 

Reconstruction algorithms should be defined 

Codes should be simple (preferably made by hand) 

Decoding should be possible, preferably by hand 

Nonsystematic (trivial) names should not be used 

Properties should not be used 

Codes should be brief 

Codes should be pronounceable 

Codes should be easily understood 

Familiar symbols only should be used 

Coding and decoding should be efficient 

Similar structures should have codes of similar length 
(proposed by Randi6 in ref. [3]) 

that the code be unique, short and complete, i.e. that they allow reconstruction of  a 
molecule. Such a list can be augmented with additional requirements such as: that 
codes of similar molecules are of  similar length [3]. No extensive recommendations 
on desirable attributes for topological indices have been proposed in the past. Here, 
we want to correct the situation by offering a list of  properties for molecular descriptors. 

2. Desirable requirements on topological indices 

Here, under "topological index" we understand a characterization of  a molecule 
or a molecular graph by a single number. Clearly, a single number representation of  
a structure is accompanied by a considerable loss of information. However, what 
appears remarkable is to see how much of  the relevant structural information can be 
absorbed by a single number "projection" of  a structure. Of course, one can view N, 
the number of atoms in a molecule, and K, the number of  Kekul6 valence structures, 
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as early topological indices, but they have been used primarily as molecular properties, 
not descriptors. Indeed, there are too many molecules with either the same N or the 
same K for these parameters to be considered as useful "descriptors". 

In table 2, we list several better known topological indices, starting with 
Hosoya's Z, the number which counts nonadjacent pairs of  bonds in a molecular 
structure [7]. This is the first topolgical index proposed in the literature explicitly as 

Table 2 

Several better known topological indices 

Descriptor Structural interpretation Author 

Z 

Z 

W 

J 

P 

ID 

C 

k 

WID 

Count of non-adjacent bonds in a molecular Hosoya 
graph 

Connectivity index: Sum of weighted bonds. Randi6 
Bond type (rn, n) has weight 1/'/m-n- 

Sum of path lengths Wiener 

Sum of weighted distances. Pair (i, j )  has Balaban 
weight 1/D~// 

Path numbers Platt 

Identity numbers: Sum of weighted paths. Randi6 
Weights are given by 1/m'f-m-n 

Centric index: Based on the count of steps Balaban 
in pruning terminal bonds 

Shape index: Scaled on the differences in Kier 
connectivity indices for extreme graphs 

Sum of weighted walks with weights given Trinajsti6 
by 1/mq-m--h- 

a single number representation of a chemical structure. Next is listed the connectivity 
index [8], the index based on discrimination of  bonds into (m, n) bond types, where 
m, n are numbers of  the nearest neighbors to the bonded atoms. Apparently, this is 
the most widely used descriptor in structure-property and structure-activity studies. 
We continue the list with the Wiener number W, which is the sum of all distances 
for all pairs of  atoms in a structure [9] and which according to Platt [10] gives some 
measure of molecular volume. This particular index was the first nontrivial "topological" 
(i.e. graph-theoretical) molecular descriptor suggested, but as introduced initially it 
was not constructed to represent a structure by a single number (as was the case with 
Hosoya's Z number), but rather to be one of the two descriptors used in correlating 
several physico-chemical properties of alkanes and related structures. The other 
descriptor of  Wiener was P3, the number of paths of  length three. We could include 
in table 2 (as a single number descriptor) the combinations of  path numbers, such 
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as P2 - P 3  [11] and P0 + P1 + P3 [12], which suggests that linear combinations and 
other functional relationships of  indices may be viewed as a single descriptor. Clearly, 
this opens novel possibilities, and further proliferation of  topological indices may be 
anticipated. Hence, an evaluation of the great multiplicity of possible descriptors is 
needed, and we now present a list of  desirable attributes for topological indices 
(table 3) to facilitate such evaluations. 

Table 3 

List of desirable attributes for topological indices 

1 Direct structural interpretation 

2 Good correlation with at least one property 

3 Good discrimination of isomers 

4 Locally defined 

5 Generalizable to "higher" analogues 

6 Linearly independent 

7 Simplicity 

8 Not based on physicochemical properties 

9 Not trivially related to other indices 

10 Efficiency of construction 

11 Based on familiar structural concepts 

12 Show a correct size dependence 

13 Gradual change with gradual change in structures 

Before discussing the outlined desirable attributes, we would like to suggest 
that topological indices and more general topological descriptors be differentiated. 
A descriptor is a more general quantity used in a characterization of  a structure. 
When a descriptor satisfies the key requirements, in particular when it alone can 
account for at least a single molecular property, we should "promote" it to the status 
of a topological index or a molecular index. 

We listed as the first criterion that an index has a structural interpretation. 
Only indices which are based on simple structural concepts will help one to interpret 
convoluted and complex properties in terms of the structure. In addition to being 
simple, an index has to be useful in structure-property correlations. When a descriptor 
correlates with a single molecular property, it indicates the dominant structural 
component for that molecular property; otherwise, indices are combined and will 
be viewed as auxiliary molecular descriptors. Accordingly, the Wiener number W, 
as introduced initially by Wiener, does not qualify as a topological index because 
on its own W was not noted to correlate with physico-chemical properties. Indeed, 
it was introduced as one of  two topological descriptors needed to have a successful 
correlation. Subsequently, however, Rouvray [13] demonstrated that W correlates 
well with some properties of  alkanes, by virtue of which we today prequalify W as 
a "legitimate" topological index. Next, topological indices ought to be isomer- 
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sensitive, i.e. they ought to differentiate among isomers so that they can be used 
in the studies of isomer variations of molecular properties, and in general in the 
studies of  those aspects of molecular properties which are size dependent. Many 
apparently successful regressions were reported on molecules of  different size, and 
not surprisingly, many of these are found to be well represented by n, the number 
of atoms in a structure, which is a very good descriptor (even if not the only one) 
of molecular size. The challenges in structure-property studies are variations in 
properties among molecules of the same size [14]. Correlations where the dominant 
structural feature is size can often be successfully represented by trivial descriptors 
such as the number of atoms N, or the molecular weight MW. A search for "universal" 
regressions which incorporate size, shape and functionalities becomes unwarranted 
if individual structural features can be well investigated separately. There will be 
cases where the separation of the structural features such as size and shape, or shape 
and functionality fails, but these have first to be identified [14]. A route to 
characterization of situations where "separation of variables" fails is to study differences 
in characterization of molecules using global and local descriptors. Hence our 
emphasis on capability of topological descriptors to describe molecular local features. 
Finally, because in many situations a single descriptor will not suffice, it is of 
interest to investigate whether or not a family of structurally related descriptors can 
account for a property. Thus we require, when possible, that a topological index be 
generalized into "higher" indices which are to supplement the initial index and offer 
a more complete basis for a regression. 

A recommendation that a novel topological index be "orthogonal" to the 
existing indices means that such an index leads to a correlation with a property not 
successfully analyzed with existing descriptors, or that it correlates with a residual 
in an acceptable regression based on other descriptors. Recently, the concept of 
orthogonal molecular descriptors has been introduced [16, 17] which allows one to 
test descriptors and establish the degree of a "duplication" involved when several 
descriptors are combined in a single regression. 

3. Systematic generation of graph invariants 

Ad hoc descriptors are typically unrelated to each other. Many are introduced 
in an apparently arbitrary fashion, as illustrated by the classical case of Langevin [18], 
who assumed that an atomic or molecular magnet carded a permanent moment #. 
The prime advantage of ad hoc descriptors is precisely that their apparent unrelatedness 
to the existing structural concepts makes them attractive candidates to "explain" not 
yet understood (in terms of structural concepts) molecular properties. 

Another route to descriptors is to derive them systematically by generalizing 
the existing indices. Such are, for example, "higher" connectivity indices [ 19] which 
supplement the connectivity index Z in many regressions, and "higher" path 
numbers [20]. A way to generalize invariants based on matrix-vector  multiplications 
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was outlined by Balaban and coworkers [21]. As vectors, one can select graph- 
theoretical, quantum chemical or even empirical quantities (such as Van der Waals 
atomic radii, atomic weights, etc.). The distinction between these three types of 
vectors, corresponding to structure-explicit, structure-implicit, and structure-cryptic 
classification of molecular descriptors [22], is worth observing. 

4. Matrices as a source of graph invariants 

It is natural to extend considerations in deriving graph invariants from the 
adjacency matrix A and the distance matrix D to other graph matrices. Some molecular 
matrices received considerable attention in other areas of chemistry. In the analysis 
of infrared spectra F and G, matrices are well known, representing a molecular 
force field and inverse molecular geometry, respectively [23]. Hamiltonian matrices 
typically relate the pertinent contributing terms to the total molecular energy via the 
basis functions adopted, Other less frequently used molecular matrices include, to 
mention a few: Ugi and Dugundji's BE matrices [24], which include count of valence 
and lone pair electrons in a structure, inverse adjacency matrix (when it exists) [25], 
bond order and polarizability matrices of MO calculations [26], and Tutte's matrix 
[27] (which has been referred to also as Kirchhoffs matrix, in view of the fact that 
its minors enumerate spanning trees, the concept considered by Kirchhoff [28]). 

In order to curtail proliferation of matrices to be considered as a source of 
topological indices, it seems prudent to extend the same recommendations listed for 
the topological indices to the matrices to be considered. Hence, we prefer that 
matrices, the entries of which have a direct structural interpretation, represent at 
least one particular molecular property, are sensitive to isomeric variations, can be 
generalized to "higher" analogues and, if possible, can be easily constructed. One 
need not insist, of course, that all these requirements be simultaneously satisfied; 
rather, they ought to be viewed as a guidance, desiderata. Hence, the generalized 
molecular matrices can be similarly classified into structure-explicit, structure-cryptic 
and structure-implicit, depending on whether the elements of the matrices are graph 
(structural) invariants, molecular properties or quantum chemical quantities, respectively. 
Molecular matrices, in general, can be referred to as a "through bond" and a "through 
space" type. The former type includes only "interactions" (or information) on adjacent 
atoms (vertices), and when a non-zero entry occurs in non-adjacent vertices, it is 
derived from the information on adjacent vertices only, while the latter type corresponds 
to situations where all interatomic (including all non-adjacent pairs) "interactions" 
are incorporated in a matrix. 

4.1. STRUCTURE-EXPLICIT MATRICES 

The adjacency and the distance matrix illustrate the class of structure-explicit 
matrices. The matrix of the graph-explicit class shown in table 4 is based on a 
measure of relative "importance" of an edge, a novel graph invariant. The "importance" 
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Table 4 

Matrix based on graphical bond order P'/P and derived path 
counts illustrated on the molecular graph of 2-methylpentane 

Matrix 

0 10/15 0 0 0 0 

10/15 0 6/15 0 0 10/15 

0 6/15 0 7/15 0 0 

0 0 7/15 0 10/15 0 

0 0 0 10/15 0 0 

0 10/15 0 0 0 0 

Atom Paths 
P 1 P2 P3 P4 

1 9.6667 0.7111 0.1244 0.0830 

2 1.7333 0.1867 0.1244 

3 0.8667 0.8445 

4 1.1333 0.1867 0.2489 

5 0.6667 0.3111 0.1224 0.1659 

6 0.6667 0.7111 0.1244 0.0830 

Molecule 2.8667 1.4756 0.3733 0.1659 

ID (sum) 4.8815 

is here defined as follows: For each edge (bond) we find, separately, the total 
number of paths in a subgraph obtained by erasure of the bond examined. If the 
derived subgraph is disjoint, the contributions of each component are added. Each 
edge is assigned a weight given by the ratio P'/P, where P '  is the number (frequency) 
of paths obtained in subgraph G" in which the edge was deleted, and P is the number 
of paths in G. This novel local quantity is analogous to more general local descriptors 
recently considered by Balaban and coworkers [29]. It differs from them in that the 
molecular descriptor here is based on additivity, rather than on multiplicativity of 
fragment components. Construction of P'/P is illustrated in fig. 1 on a graph of  2- 
methylpentane. 

The class of structure-explicit matrices includes the topographic matrices [30] 
in which entries represent the actual (three-dimensional) distances between vertices 
when the graph is embedded in a two- or three-dimensional grid. Such matrices can 
be viewed as geometry-based matrices, where bond lengths and bond angles are 
idealized, restricted by the geometry of the coordinate grid, such as a graphite 
lattice or a diamond lattice, respectively. 
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P ' -  10 P ' / P - 0 . 6 6 6 7  

P' - 3 + 3 P ' / P -  0 A 0 0 0  

P' - 1 ÷6 P'/P-0.~667 

P' - 10 P ' / P -  0 .6667  

P' - 10 P' /P-  0.6667 

Molecular index 43/15 = 2.8667 

Fig. 1. Illustration of a construction of the 
graphical bond order P'/P for 2-methylpentane. 

4.2. STRUCTURE-CRYPTIC MATRICES 

When known experimental atomic and bond properties are used directly in 
a construction of matrices, we obtain structure-cryptic matrices with entries representing 
some molecular property. Alternatively, if a molecular property is partitioned into 
atomic and bond contributions, one can use such data for a construction of  a 
property-related structure-cryptic matrix. Matrices, the entries of which record molecular 
properties, local as well as global, were considered already fifty years ago as 
potentially interesting objects in chemistry by Balandin [31]. 

4.3. STRUCTURE-IMPLICIT MATRICES 

As an illustration of  structure-implicit matrices, we consider the bond order 
matrix (table 5) and the bond overlap matrix (table 6). In the first case, the elements 
of  the matrix are bond orders such as, for example, defined by Coulson [32] or 
Pauling [33] for MO and VB calculations, respectively. The matrix in table 5 
represents bond orders of  benzene based on Coulson's MO bond orders. Observe 
that entries in a bond order matrix may be negative, hence the "count" of  paths can 
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Table 5 

Bond overlap matrix and derived path counts illustrated on the benzene graph 

Bond order matrix 

1.0000 0.6667 0 - 0.3333 0 0.6667 

0.6667 1.0000 0.6667 0 - 0.3333 0 

0 0.6667 1.00130 0.6667 0 - 0.3333 

- 0.3333 0 0.6667 1.0000 0.6667 0 

0 - 0.3333 0 0.6667 1.0000 0.6667 

0.6667 0 - 0.3333 0 0.6667 1.0000 

Atomic paths 

P1 P2 P3 P4 P5 

1.000000 0.000133 - 0.44438 0.296326 0.296346 

Molecular paths 

3.0000 0.000400 - 1.33333 0.88898 0.88904 

Total number of paths: 3.44558 

Table 6 

Maximum overlap matrix for norbornane and derived path counts 

Bond overlap matrix 

0 A 0 0 0 A B 

A 0 C 0 0 0 0 

0 C 0 A 0 0 0 

0 0 A 0 A 0 B 

0 0 0 A 0 C 0 

A 0 0 0 C 0 0 

B 0 0 B 0 0 0 

A = 0.6431 

B = 0.6389 

C = 0.6445 

Paths for nonequivalent vertices 

Vertex P1 P2 P3 P4 P5 P6 

a 1.9521 1.2371 1.0581 1.0218 0.2210 

b 1.2876 1.2389 1.0604 0.8500 0.5478 0.1407 

c 1.2778 1.6435 1.0592 0.6812 0.4381 0.2823 

Molecular paths 

5.1392 4.5368 3.708 3.0625 1.5357 0.4226 

Total number of paths: 18.4053 
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become a negative quantity. The bond overlap matrix is illustrated for the case of 
norbornane, a bicyclic C7H12 hydrocarbon. The entries A, B, C in the bond overlap 
matrix (table 6) represent carbon-carbon bond overlaps computed using the maximum 
overlap method [34,35]. 

5. Illustration 

Balaban and Motoc [36] investigated correlations with octane numbers of 
numerous topological indices in alkanes having from four to eight carbon atoms. 
The following is the summary of the statistics of single variable regressions for a 
few of the descriptors considered by Balaban and Motoc [36]: 

Wiener W number R = 0.702 S = 7.17 

Centric index R = 0.940 S = 8.44 

Paths of  length 2 R = 0.882 S = 1 1 . 6 2  

Connectivity Z R = 0.778 S = 15.50 

Hosoya's Z index R = 0.957 S = 17.52 

The centric index, introduced by Balaban [37] as a measure of centrality for acyclic 
graphs, is defined via the number of steps needed to prune terminal edges of  a 
graph. Apparently, from the above it appears that the centric index is the best 
among about a dozen descriptors tested. Notice that the highest correlation coefficient 
(R), achieved by Z, shows the worst standard error (S), while the poorest correlation 
coefficient, the Wiener number, shows the smallest standard error! The role of  the 
individual descriptor thus remains obscure, in particular as seen above, it is not 
clear how well the individual descriptors characterize molecular size and how well 
they vary with variations in shape. 

In order to see to what extent the results of  Balaban and Motoc are dominated 
by the size dependence and to what extent they are due to isomeric variations of 
molecular shapes, we restricted attention to octane isomers only. The revised regression 
analyses for the same selected descriptors, limiting the sample to octane isomers, 
are summarized in table 7. 

Overall, one still obtains similar regression statistics, with the exception of  
a dramatic improvement in R for the Wiener number, and a visibly reduced correlation 
coefficient for Z. The connectivity index and the Hosoya index in the case of 
isomeric variations of octane numbers account for less than 50% of the variance in 
the data. Not surprisingly, these indices do not appear successful here because they 
reproduce the ordering of other properties, such as heats of  formation and boiling 
points, which as is known do not correlate with octane numbers. 

We augmented the analysis by adding two novel descriptors A'/A and P'/P. 
A construction of  the P'/P descriptors is illustrated in fig. 1 for 2-methylpentane. 
The A'/A index is similarly constructed with the difference that here also the path 
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Table 7 

Regression equations, the correlation coefficients (R) and the standard errors 
(S) for correlations between selected topological descriptors and octane 
numbers in octane isomers 

Descriptor *) Regression equation R S 

Variable Constant 

W - 5.15 431.83 0.954 7.41 

C 12.57 21.93 0.934 8.81 

P2 21.07 - 102.80 0.850 13.02 

Z - 140.29 584.50 0.688 17.93 

Z - 4.09 178.15 0.609 19.59 

A '/A 141.99 - 635.93 0.181 14.20 

P'/P 144.31 - 578.06 0.954 7.41 

a)W: Wiener number. C: Centric index by Balaban. P2: Paths of length 2. 
Z: Connectivity index. Z: Topological index by Hosoya. A'/A: Path 
numbers including atomic contributions. P'/P: Path numbers. 

Table 8 

P'/P values for octane isomers, experimental and calculated 

Octane P" P'/P Octane number 
Exp. Calc. 

n-octane 128 4.0000 - 0.09 

2-M 117 4.1786 23.8 25.48 

3-M 120 4.2857 35.0 40.71 

4-M 121 4.3214 39.0 45.78 

2, 5-MM 122 4.3571 55.7 50.86 

3 -E 124 4.4286 52.4 61.02 

2, 4-MM 125 4.4643 69.9 66.10 

2, 2-MM 125 4.4643 77.4 66.10 

2, 3-MM 126 4.5000 78.9 71.17 

3, 4-MM 128 4.5714 81.7 81.32 

3, 3-MM 129 4.6071 83.4 86.40 

2-M, 3-E 129 4.6071 88.1 86.40 

2, 3, 3-MMM 130 4.6429 99.4 91.49 

2, 2, 4-MMM 130 4.6429 100.0 91.49 

2, 3, 4-MMM 131 4.6786 95.9 96.56 

3-M, 3-E 132 4.7143 88.7 101.64 

2, 2, 3-MMM 133 4.7500 99.9 106.71 

2, 2, 3, 3-MMMM 138 4.9286 - 132.10 
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of length zero, i.e. atomic contribUtions, is included in the count. In table 8 are 
listed, for octane isomers, their octane numbers and the molecular P'/P indices, obtained 
as outlined by adding all P'/P for individual bonds. In addition, table 8 gives the 
computed octane numbers as derived from the regression equation. The best regressions 
of table 7 are based on P'/P and on the Wiener number. Observe that both regressions 
have somewhat better R value and smaller S value than the correlation of Balaban 
and Motoc using the centric index. The corresponding R and S values for P'/P and 
W appear to be the same, which raises a suspicion that the two quantities may be 
related or are highly correlated. To test this, we derived a regression of the novel 
P'/P descriptors against the Wiener numbers. One obtains: 

P'/P = -0.035685 W + 6.997889, with R = 1.0000 and S = 0.00019. 

This can be recognized and rewritten as: 

P'/P = - ( 1 / 2 8 ) W + 7  or W = 1 9 6 - P ' ,  

since for octane, P = 28. Hence, the descriptor P'/P, although novel and defined 
without references to the Wiener number, is nevertheless simply, although not 
trivially, related to the Wiener number W, at least in the case of acyclic graphs! 

It is interesting to see how two different concepts, the Wiener number, which 
is a global descriptor paralleling molecular volume according to Platt [10], and the 
bond additive local descriptor P'/P, which is sensitive to the bond environment, are 
linearly related. Even with this hindsight, the close relationship between the two 
descriptors is not obvious. Recollect that according to Wiener [9]: "The path number 
W is defined as the sum of  the distances between any two carbon atoms in the 
molecule, in terms of  carbon-carbon bonds. Brief method of calculation: Multiply 
the number of carbon atoms on one side of any bond by those on the other side; 
W is the sum of these values for all bonds." In contrast, a construction of  P '  can 
be summarized briefly as: Add the number of paths on one side of  any bond to those 
on the other side; P '  is the sum of these values for all bonds. Although the total 
number of paths (in trees) is simply related to the number of vertices, the two 
algorithms involve different operations, multiplication versus addition, yet P '  remains 
linearly related to W. 

6. Concluding r e m a r k s  

We are optimistic of  the future expansion of the regression analysis in 
structure-property and particularly structure-activity studies. Our optimism is mainly 
based on the potentiality of the recently introduced methodology of  orthogonalized 
molecular descriptors. Orthogonal descriptors, in addition to their proven numerical 
stability [38], allow one to evaluate the statistical significance of each individual 
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descriptor and discard those that are of  marginal importance. Even though the 
approach based on orthogonal descriptors bears a subtle resemblance to the Principal 
Components Analysis (PCA), it is conceptually and computationally different and 
deserves its own label. Hence, we propose to refer to it as the Dominant Components 
Analysis (DCA). The parallelism in the naming of  the procedure with the well- 
known PCA is, of  course, deliberate and very appropriate in view of  the fact that 
DCA can identify dominant components in a multivariate regression. Moreover,  due 
to the constancy of  the coefficients of  the regression equation, the dominant structural 
factors in a regression can be interpreted. Hence, we may be at the beginning of  
a new direction in applications of multivariate regression analysis in structure-property 
and s tructure-act ivi ty  studied. Our optimism is further enhanced by the following: 

(1) Continuing use of  algebraic descriptors and other mathematical invariants 
in regression analysis, thus avoiding meta-structural characterizations of  molecules 
via their own properties, which would leave the nature of  such descriptions structure- 
cryptic. 

(2) Augmenting the existing descriptors matrices describing other than adjacency 
relationships in graphs as a source for invariants. It is advantageous to use structure- 
explicit and structure-implicit matrices as a source for matrices based on molecular 
properties when an understanding of  s t ruc ture-proper ty  or s t ruc ture-ac t iv i ty  
relationships is intended. Descriptors based on matrices of molecular properties 
(disregarding that these may be subject to limitations due to experimental errors) 
also have their use. As a matter of  fact, at least for a discussion of isomeric 
variations, as has been found recently, properties are by far less intercorrelated 
among themselves than was hitherto believed to be the case [14]. Hence, descriptors 
based on properties are likely to cover adequately the "structure-space" of  molecules 
investigated. 
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